172. Factorial Trailing Zeroes
LeetCode MathGiven an integer n, return the number of trailing zeroes in n!.
Example 1:
Input: 3
Output: 0
Explanation: 3! = 6, no trailing zero.
Example 2:
Input: 5
Output: 1
Explanation: 5! = 120, one trailing zero.
Note: Your solution should be in logarithmic time complexity.
分析¶
给定一个整数n,返回n!结果尾数中零的数量。如果尾数中要有0,需要有5、2因数;又因为2的数量永远是足够的。所以尾数中零的数量等于n!中5的数量。
例如数字2147483647,因式分解展开:
\small \begin{align*}2147483647!=2 \times 3 \times ...\times 5 ... \times 10 ... 15\times ... *\times 25 ... \times 50 ... \times 125 ... \times 250...\\
=2 \times 3 \times ...\times 5 ... \times (5^1\times 2)...(5^1\times 3)...*(5^2*1)...*(5^2\times 2)...*(5^3 \times 1)...*(5^3 \times 2)... \end{align*}
只要计数5的数量:5的倍数提供了一个5,25的倍数提供了2个5,也就是多提供了一个5。所以5的数量等于: $$ n/5 + n/25 + n/125 + n/625 + n/3125+...$$
// 递归形式
public int trailingZeroes(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5);
}
// 迭代形式
public int trailingZeroes(int n) {
if (n < 5) return 0;
int count = 0;
while (n > 4) {
n /= 5;
count += n;
}
return count;
}