370. Range Addition
Leetcode ArrayAssume you have an array of length n initialized with all 0's and are given k update operations.
Each operation is represented as a triplet: [startIndex, endIndex, inc]
which increments each element of subarray A[startIndex ... endIndex]
(startIndex and endIndex inclusive) with inc.
Return the modified array after all k operations were executed.
Example:
Given:
length = 5,
updates = [
[1, 3, 2],
[2, 4, 3],
[0, 2, -2]
]
Output:
[-2, 0, 3, 5, 3]
Explanation:
Initial state:
[ 0, 0, 0, 0, 0 ]
After applying operation [1, 3, 2]:
[ 0, 2, 2, 2, 0 ]
After applying operation [2, 4, 3]:
[ 0, 2, 5, 5, 3 ]
After applying operation [0, 2, -2]:
[-2, 0, 3, 5, 3 ]
Hint:
- Thinking of using advanced data structures? You are thinking it too complicated.
- For each update operation, do you really need to update all elements between i and j?
- Update only the first and end element is sufficient.
- The optimal time complexity is O(k + n) and uses O(1) extra space.
分析¶
LintCode链接。暴力法:每次更新[startIndex, endIndex]区间
public int[] getModifiedArray(int length, int[][] updates) {
int[] res = new int[length];
for (int i = 0; i < updates.length; i++)
for (int j = updates[i][0]; j <= updates[i][1]; j++)
res[j] += updates[i][2];
return res;
}
比较巧妙的方法:
public int[] getModifiedArray(int length, int[][] updates) {
int[] arr = new int[length + 1], res = new int[length];
for (int[] update : updates) {
arr[update[0]] += update[2];
arr[update[1] + 1] -= update[2];
}
res[0] = arr[0];
for (int i = 1; i < length; i++)
res[i] = res[i - 1] + arr[i];
return res;
}