78. Subsets
Leetcode Array Backtracking Bit Manipulation题目¶
Given a set of distinct integers, nums
, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
分析¶
幂集(power set)的wikipedia页面
其实和sublists思路一样。以第i个元素是否出现在output中为判断条件,构建decision tree。使用backtracking。
class Solution {
public:
void subsetsHelper(int& n, int position, vector<int>& nums, vector<int>& chosen, vector<vector<int>>& res){
if (position==n){
res.push_back(chosen);
return;
}else{
//choose and explore
subsetsHelper(n, position+1, nums, chosen, res); // 不选择
int s = nums[position];
chosen.push_back(s);
subsetsHelper(n, position+1, nums, chosen, res); // 选择
//unchoose
chosen.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> res;
vector<int> chosen;
int n = nums.size();
subsetsHelper(n, 0, nums, chosen, res);
return res;
}
};
不过也可以使用传统的backtracking,但是其base case始终发生。
class Solution {
public:
vector<vector<int> > subsets(vector<int> &nums) {
vector<vector<int> > res;
vector<int> vec;
subsets(res, nums, nums.size(), vec, 0);
return res;
}
private:
void subsets(vector<vector<int> > &res, vector<int> &nums, int n, vector<int> &vec, int begin) {
res.push_back(vec);
for (int i = begin; i < n; ++i) {
vec.push_back(nums[i]);
subsets(res, nums, n, vec, i + 1);
vec.pop_back();
}
}
};